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Absgtract

The theory of positive dependence notions cannot yield useful
results for some widely used distributions such as the multinomial,
Dirichlet and the multivariate hypergeometric. Some conditions of
negative dependence that are satisfied by these distributions and which
have practical meaning are introduced. Preservation results for some
of these concepts are derived. Useful 1nequalit£ea for some widely
used distributions are obtained. Results of Mallows (1969) that apply
to the multinomial distributions are extended to more distributions.

Examples are listed.
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1. Introduction.

Concepts of positive dependence of sets of random variables (rv's)
have received a lot of attention recently. Their study was found to
yield a better understanding of the structure of some widely used multi-
variate distribution functions (df's). 1In addition to this, various
useful inequalities were obtained with applications in many areas of
probal.ility and statistics. Barlow and Proschan (1975), Ch. 5, include
a review of most of the work done prior to 1972, A list of more recent
references can be found in Ahmed et al. (1978).

On the other hand notions of negative dependence have received very
little attention in the literature. Some negative dependence analogs of
positive dependence concepts have been mentioned by some authors (Lehmann
(1966), Brindley and Thompson (1972), Dykstra, Hewett and Thompson (1973)
and Shaked (1977) among others). In the bivariate setting the random
vector (Tl’TZ) is usually said to satisfy some negative dependence
condition if (Tl,-TZ) satisfies the analogous positive dependence
condition. However, this method of formulation cannot apply to higher
dimensions. To the best of our knowledge Lehmann (1966) in the bivariate
setting and Mallows (1968) in the multivariate setting came the nearest
to a systematic study of negative dependence concepts; Mallows' discussion,
however, is restricted to the multinomial distribution. The development
below is in the spirit of Mallows; his results are special cases of ours.

While the first draft of this paper was being written two related
works were brought to our attention. The first work by Ebrahimi and Ghosh
(1980) discusses some negative dependence analogs of well known positive

dependence concepts. Some of our definitions overlap those of Ebrahimi and

Ghosh (1980); however, our main results differ from theirs. The second
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related paper is by Karlin and Rinott (1980). They introduce a negative

dependence notion which is closely related to one of ours and they obtain

i;‘ some results which are similar to ours. Some remarks about the relationship !

e

between these two works and the present paper will be given throughout the T
text., A

The main motivation for our definitions is to try to formulate the

intuitive requirement that if a set of negatively dependent random

variables is split into two subsets in some manner then one subset will
tend to be 'large' when the other subset is 'small' and vice versa. In
Section 2 we define the conditions to be discussed. We derive some in-

equalities in Section 3 and prove some preservation properties in Section 4.

Examples are given in Section 5.
: In the followiﬁg "increasing" stands for "nondecreasing" and "decreasing"
for "nonincreasing". Vectors in R" are denoted by t= (tl,...,tn) and

t<t' means t i=1,...,n. Similarly t < t' means t < t}

1 £t 1< e
5 i=1,...,n, and 0 = (0,...,0). A real function on R" will be called
i increasing 1f it 1s increasing in each variable when the other variables
are held fixed.

A rv X {18 said to be stochastically smaller than the rv Y (denoted ]
by X i{ Y) 1f P(X > x) < P(Y > x) for every real x. The random vector
X= (xl,....xn) is said to be stochastically smaller than Y = (Yl,...,Yn)
[denoted by X ?<_t Y] 1if g(X) s:t g(Y) for every g ¢ C where C is the
class of Borel measurable increasing functions on R". If¢ X and Y have
the same df then we write g_itx. It is well known that X %f Y if and

only if

- (1.1) P(XeU) < P(YeU) for every upper Borel set U in ",
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[U is an upper set if x e U and x <y implies that y e U.] According
to Kamae, Krengel and 0'Brien (1977), we need only consider open upper

< & sets U 1in R". It is also well known that for every random vector X,

Ly (1.2) X+a sit X whenever a > 0
‘ﬁ and that
<
i t E
(1.3) X + A% X whenever A 1is a nonnegative random vector.
At+TA > A A 4

& Also 1f P(X > 0) = 1 then

;4 (1.4) aX %f X whenever a > 1.

.

See Arjas and Lehtonen (1978) for an excellent review on stochastic
ordering.
If X and Y are random vectors such that X given that Y = y

is stochastically smaller (larger) than X given that Y = y', whenever

<y' and and ' are in the support of Y, then we write
rx b4 b4 L

x|y = y1 % @5 y.

More precisely, this means that for every upper set U, there exists a
version of P(X € U|Y) = ¢(Y) such that ¢(y) is increasing (decreasing)

in y on the support of Y,

A bivariate function K(+,:) which 18 defined on S1 x S2 (where S1

and S, are subsets of R) is said to be totally positive of order 2

2

(TPZ) on S1 x 82

if K(x,y) > 0 and if

(1.5) K(x,y) K(x',y') > K(x,y") K(x',y) whenever x < x', y <y’
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(see Karlin (1968)). The function K 1s said to be reverse regular

of order 2 (RRZ) on, S1 x S2 if K(x,y) > 0 and if

(1.6) K(x,y) K(x',y') < K(x,y') K(x',y) whenever x < x', y<y’,

(see Karlin (1968), p. 12).

2, Negative dependence concepts.

Most, but not all of the positive dependence concepts discussed i{n the
literature have negative dependence analogs that can be obtained by changing
the direction of the monotonicity or of the inequalities which define them.
Here we define four conditions of this type which we find useful because we
have methods of identifying distributions which satisfy them. Two of them
are direct analogs of '"conditionally increasing in sequence" and "positive
orthant dependent'. The third has a positive dependent counterpart, but it
does not seem to have been discussed in the literature, while the fourth is
a variation of "totally positive of order two (TPZ) in pairs".

In the case of positive dependence, one of the strongest and most use-
ful notions is that of TPz-ness in pairs; that is, the joint density or the
discrete probabilicy function f 1s assumed to exist and be TP2 in pairs
(see Barlow and Proschan (1975), p. 149). The natural negative dependence
analog then is to assume that f is RR2 in pairs. There are several
drawbacks to this notion, however. Firstly, unlike the situation in which
the joint density (or discrete probability function) is TP2 in pairs, the
marginal densities do not necessarily enjoy the same property. A simple

3x 2 x 2 discrete example suffices to show this, In fact, Theorem 5.1,

p. 123 of Karlin (1968) ia false when TP2

is replaced by RRZ' (1t

e e e
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should also be remarked here that even in the TP2 case, one must make

some assumptions on the nature of the set {f > 0} bhefore one can use
the above Theorem 5.1 to conclude that the marginal densities are also
TP2 in pairs: see Kemperman (1977)). A possible alternative then is to

assume that not only f, but all its marginal densities are RR in pairs.

2
But even under this assumption we have not been able to show that our
weakest condition (see Definition 2.3) is consequently satisfied. Ebrahimi
and Ghosh (1980) claim to have proven this result; however, their proof is
based on an implication which, as will be shown below, does not hold (see
discussion after Definition 2.4).

Because of these drawbacks and since we do not always want to assume
the existencé’of a density, we prefer to work directly with the measure
itself. This point of view 1s consistent with our other definitions in
that we do not make any assumptions on the existence of a density in
defining them. We are thus led to our first definition.

l.,et u be a probability measure on the Borel sets in R, If
Il,...,In are intervals in ]Rl, we define the sét function ﬁ(Il,...,In)
by E(Il,...,In) = u(le...xIn). By abuse of notation, we write u 1instead

of u. If I and J are intervals in ]Rl, we write T <J if x e I,

y ¢ J 1implies x < y, that is, 1 1lies to the left of J.

Definition 2.1. Let u be a probability measure on 'Rz. We say that yu

is reverse regular of order two (RRZ) if

[

(2.1) H(1,,1,) w(1),15) < w(ly,I5) w(if,I,)

for all intervals I1 < Ii, 12 < Ié in ZR}. We also say that u(Il'IZ)

is RR2 in the variables 11,12. If u 1is a probability measure on R"

ok,
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(n > 2), we say that u 1is 532 in pairs if u(Il,...,In) is RR2 in

the pairs Ii'Ij for all 1 <1 < j < n when the remaining variables are
held fixed. The random variables Tl,...,Tn (or the random vector T or
its distribution function F) are said to be RR, in pairs if its

corresponding probability measure on Rr" is.

Remarks:

(i) The obvious TP2 definitions for u are obtained by reversing

the inequality in (2.1).

(11) Clearly, if u 1is RRZ(TPZ) in pairs, then so are all marginals.

Furthermore, it is not difficult to show that if F 18 the
distribution function associated with u and if
F(tl""’cn) = u((t1.°), (tz,m),....(tn,wz) is the survival
function, then the functions F and F are RRZ(TPZ) in pairs
in the sense of (1.5) and (1.6).

(iii) It is easy to show by a simple limiting argument that 1f u 1s
RRZ(TPZ) in pairs, and 1f u has a density f with respect to

a product measure m = m X...*mn ot o~finite measures such that

1
f 1is continuous on the support of m and zero off the support
of m, then f 1s RRZ(TPZ) in pairs,

(1v) In the n = 2 case, we have the stronger converse, namely, if

p has a density f with respect to a product measure m = m xm,

of og-finite measures which is RRZ(TPz) on S1 x Sz, where S1

is the support of mi(i = 1,2), then u |is RRZ(TPZ)’

(v) In the TP, case, one can generalize to higher dimensions if one

2

makes some assumption on the set {f > 0}. Let u have a

density f with respect to a product measure wm = myXeeoxm of
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o-finite measures. Let Si

the support of m is § = Slx...xSn.

exists § = §1x...X§n such that {f >
is TP in pairs on S. Then v 1is

2

use Theorem 5.1, page 123 of Karlin (1968) repeatedly to show,

e.g., that for fixed intervals 13,...,

I3 In
is TP2 in X3 and X, on S1 x Sz.
by a simple integration using the TP2°
(vi) The generalization to the RR2

assumes, however, that has a densit

U

product measure m = mlx...xmn

the density f when integrated over any n-2 1intervals in lR1

is RR

2

RR

2 in pairs.

phrased as follows. Let Tl,...,Tn be

density f

measures). Then u 1is RR2 in pairs

l<i<j<n

be the support of m

g(xl,xz) = f...f f(xl,xz,x3,...,xn

case 1s not as simple.
of o-finite measures such that

in the remaining unintegrated variables, then u

In terms of random variables, this can be para-

(with respect to a product measure of o-finite

i Then

We assume that there

0lns = § and that f
TP2 in pairs. .Just

I in R},

n

) dm3(x3)...dm“(xn)

The result then follows

inequality for g.

If one

y f with respect to a

is

random variables with a

if and only if for every

the conditional density of é

(t,T)| M {1, e L}
173 ke,
is RR2 in t, and tJ for all choices of intervals Ik(kii,j)
in lRl. Equivalently, 1if XI denotes the indicator function of
I, then u 1is RR2 in pairs 1f and only if
L x (I ECe L )T de )
RR ket WD "hpt,y K

b




is RRZ in the unintegrated variables ti and tj for all

choices of intervals Ik (k#i,j) in lRl. By replacing X

1
k
by ¢k in the above integral, and requiring it to be RR2 in
F
ti and tj whenever {¢k}kfi,j is a set of P 2 functions,

one obtains the negative dependence condition of Karlin and
Rinott (1980). 1It is a condition which is stronger than the
one of Definition 2.1 as can be easily seen by recalling that

the indicator function of an interval is PFZ'

(vii) Clearly, if (un} is a sequence of RR, in pairs probability

2

measures and 1f u, converges weakly to u then u is RR2

in pairs.

Definition 2.2, The rv's Tl,...,Tn (or the random vector T or its

df) are said to be conditionally decreasing in sequence (CDS) if, for

i=1,2,...,n-1,

st
(2.2) [THIITI = e Ty =t ] (t,000,t).

Definition 2,3, The rv's Tl""’Tn (or the random vector T or its

df) are said to be negatively upper orthant dependent (NUOD) if for every

n
(2.3) P(T > t) 5-111P(T1 > ti)'

They are said to be negatively lower orthant dependent (NLOD) if for every

(2.3") P(T <) < wlP(r

LY

L

da ek aubiue
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When n = 2, (2.3) and (2.3'} are equivalent, but not when n > 3
i (see, for example, Ebrahimi and Ghosh (1980)).
The next concept has a natural positive dependence analog, however, :
;
. we are not aware of any place in the literature in which it has been ;
M, discussed.
;
:f*; . Definition 2,4, The rv's Tl,...,Tn (or the random vector T or its
< df) are said to be negatively dependent in sequence (NDS) if, for
4
; i=2,3,...,n,
i
8
(2.4) [(Tyoees T DT, =61 % e
’ !
Often, to verify (2.4), one can find it easier to verify that for i
' i=1,...,n, :
. |
1 = !
(2.4") [(Tysee s Ty 1oTgaee T T = 6] 5 e {
: |
’ Then clearly (2.4) holds. ‘
We now investigate some of the relationships among the various !
definitions. First note that NDS implies both NUOD and NLOD and these
implications are sharp. To see this, use methods similar to Barlow and .
Proschan (1975) to show that (2.4) implies for i =1,...,n-1,
I
(2.5) [(T )T, > t,,.1 ¥ [ TOIT,,, > tl..]
. ) IR SO 52 SRS 15 S RS S 22 W U1
‘ whenever t“_1 < ti+1. (Although Barlow and Proschan assumed the existence

l

of a density, a modification of their proof works.) But from (2.5) it

follows that ?
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P('rl > tl,...,Tn > tn) <_P('r1 > tl....,T > tn_l) P(Tn > tn)

n-1

n
<_P('I‘1 > tl,...,'rn_2 > tn_z) n P('r1 > ti) 1
i=n-1
1
< e < ?P(Ti>ti) :
i=}
which proves (2.3). The proof of (2.4) =(2.3') is similar.
It is not difficult to construct an example which shows that
CDS#> NUOD and that CDS#>NLOD and hence CDS¥> NDS. For example, let
P(T =1,T,=1) = P(T,=1,T,=2) = P(T;=2,T,=2) = .1 and P(T=2,T,=1) = .7 1
and let T3 given T1 =1, T2 = 1 be degenerate at 11, T3 given L

T1 =1, T2 = 2 be degenerate at 1, T3 given T1 =2, T2 = 1 be

degenerate at 10 and T3 given Tl = 2, T2 = 2 be degenerate at 1.

Then, clearly, (Tl’TZ’T3) is CDS but P(’l‘1 >1, T, > 1) = .7 > ,64

3
= P(T] > 1) P('I‘3 > 1), thus (Tl’TZ’T3) is neither NUOD nor NLOD.

Fbrahimi and Ghosh (1980) claim that CDS =NUOD; the example shows that

ettt i ahiiomiel,

thiis is not the case.
Next we show that NDS# CDS. Let (Tl'TZ'T3) take on values on
the eight vertices of the unit cube such that
P(T]=1, T2=0, T3=1) = P(Tl-l, T2-1, T3-0) = ,2 and the other six pro-
babilities are .1. It is easy to see that T1 and T2 are independent
L
and that [(T,,T,)|T, = 0] ¢ [(T,,T)IT, = 1]. Thus, (1,,T,,T,) 1is

NDS. But P(T, > o|rl =0, T,=0) =1/2<2/3 =P(T, > olr1 =1, T, = 0),

2 2

hence (TI’TZ’T3) is not CDS.

We will shortly show that under some reasonahle assumption, RR2:$>CDS.

It is not known whether RR2=$ NDS, but it does imply NUOD and NLOD. This

is clear since from the remark (1i) following Definition 2.1, we have that




¥’

both F and F are RR2 in pairs. The result then follows by a

simple argument.
The implications RR2=>cns. RR2=> NUOD, RRZ::)NLOD, NDS =3 NUOD

and NDS =NLOD justify the consideration of the RR, and the NDS

2

concepts. In Sections 4 and 5 it will be shown that many df's are RR2
or NDS and thus these df's satisfy the meaningful CDS concept and the
inequalities which can be derived from the NUOD and NLOD concepts. In
addition to it the NDS concept is intuitively meaningful by itself., We
mention, in passing, that since Karlin and Rinott's (1980) condition
implies the RR2 condition it follows that it implies the NUOD and the
NLOD inequalities (2.3) and (2.3'). Actually, Karlin and Rinott (1980)
ohtained some additional useful inequalities which follow from their
stronger condition.

To justify calling (2.1)-(2.5) "conditions for nepative dependence"

we have to show that they imply

(2.6) cov(r,,T.) <0, 1 <1<j<n,

1 i
when the second moments exist.

From (2.3), it follows that P(T, > t, T, > tj) < P(Ty > t)) P('rj > :j)
and it is well known that this inequality implies (2.6) [see e.g., Lehmann
(1966)}). Similarly (2.3') implies (2.6) and hence also (2.4) and (2.5)
imply (2.6).

st

If (Tl""'Tn) is CDS then [T2|T1 = cll ¥ tl, hence cov(Tl.Tz) < 0,
Thus, 1if (Tn(l)""’Tn(n)) is CDS for every permutation n of {1,2,...,n}
then (2.6) holds.

We close this section with a proof that RR2 fn pairs implies CDS under

some reasonahle assumptions. Let u be RR2 in pairs and let (Tl""'Tn)
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be anv random vector having p  as its induced probahilicv measure.

Fix t, £ R and an integer i, 1

i+ i < n-1. Nefine the set functions

- A

v and X on the Borel subsets of R~ by !

v(A) = P(Ti+1‘> ti+1; (Tl""’Ti) € A) ?

A(A) = P((Tl,...,Ti) € A). {

Note that A 1is just a marginal of u. Then if {Rik}:=1 is a sequence
of rectangles which partition IRi for each £ and whose mesh size tends
2+1 2
to zero as & -+ =, and if {Rik } 1is a refinement of {Rik} for all 2,
then it is well known by martingale arguments (see, e.g., Meyer (1966))
) Cy o L 2 . 3
that on a set D with A(D") = 0, v(Rik)/A(Rik) > oty ..,ty) as Ry

decreases to (t ti) pointwise and in Ll; moreover ¢(t1,...,ti)

1000

is a version of P(Ti+ > = tl,...,Ti = ti). We may assume without

17 tnlTy
loss of generality that D C support A. We want to show that ¢ 1is

decreasing on D. This will follow if we can assume that the support

A of ) satisfies a chain condition; that is, if t e A and t' e A with

t < t', then there exist tye A such that t =t <t <...<t = t' and
51 differs from £ﬁ+1 in only one component. To see this, suppose that
t, and Eq differ in only the first component. Then let
! = - ! = © s o
Tp<0)y Ty = =ty < Ty = (8g4y»=) and I,,...,1, be any
intervals such that ty € I1 x sz...in, L€ Ii x sz"'xli' If o
is the marginal of (Tl”"’T1+l)' then since it is RR2 in pairs, we have
[ ] ) L} L}
0(11,12,...,Ii+1) p(Ii,Iz,...,Ii+1) D(II‘IZ""’Ii+1) p(Il,Iz....,Ii+l)
0 < =

1 1
X% SUPURUS SUPD Y¢S SERRRNS FRY) (L) Lyee ) B(I], 15,00 R
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or that

' i
v(I],Iz,...,Ii) . v(Il,Iz,...,Ii) y
— ' .
x(Il,Iz,....Ii) AT .12,...,11)

Note that there is no trouble dividing since the denominators are non zero.

Iterating this procedure to pass from t. to EQ, t to

1 -2
L and then letting the intervals shrink we find that ¢(t) > 4(t'). Now

53""'£m-1 to

“r ] set

c ¢(t) if
- ¢*(t) =
E inf{¢(s);

€D

e

{o

eD,s<t} (nf P =+0) 4if t ¢ D.

~fﬁ It easily follows that ¢* 1s decreasing everywhere and is a version of

P(T T

41 7 BiaplTy = Epoee Ty = £g)e

; The chain condition is easily seen to bhe satisfied if the support

| of u 1is a cross product. Without some type of chain condition, we can

; only show that ¢ 1s decreasing componentwise on D. In this case, one

| may not be able to extend ¢ such that it is decreasing everywhere and is

still a version of the condition probability.

3. Some inequalities,

This section is devoted to the derivation of some inequalities which
may be of special interest. The results closely parallel those found in

Karlin and Rinott (1980), but are derived under weaker assumptions.

Proposition 3.1, (Tl""’Tn) is NUOD 1f and only if

n n
(3.1) E{n ¢,(T,))) < n E(¢,(T)]
w1 11 g1 1V

, "“...“.....“...i...............-..||Illllllllllllllllllil‘ill
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whenever all ¢i are nonnegative and increasing. The result (3.1)

is also true if we replace NUOD by NLOD and increasing by decreasing.

Proof. Let ¢1(t) = X(b m)(t), i=1,...,n. Then (3.1) reduces to
1'

the NUOD inequality (2.3). Since each side of (3.1) is multilinear in
the 01' the result holds for nonnegative linear combinations of such
indicator functions and hence for the general ¢i by a standard limiting

argument. ||

Now suppose that u 1is RR2 in pairs. For every 1, let’ Ii = JikJ Ki’
all intervals, with Ji < Ki'
Theorem 3.1. If 1 < k < n, then
(3.2) u(Jl,...,Jn) u(Il,...,In) 5—"(Jl""’Jk’Ik+1""’In)
x u(Il,...,Ik,Jk+1,...,Jn).
The result (3.2) is also true if we replace all J's by K's.
Proof. We proceed by induction. If n = 2, then
w@3,,L) w(,,1,) 1if k=1,
1’72 172
u(Jl.JZ) u(Il,Iz) <
H(3,,3,) v(Iy,1,) 1f k= 2,
The case k = 1 follows from the RR2 assumption since
U(JlsJZ) u(Jl’KZ) U(JI‘J2) (JliJZVKZ)
0> - »




s

"—r—‘ru"r‘v

and the case k =2 1is an identity.

Now suppose that (3.2) is true whenever v is a probability measure

+
on R" which is RR2 in pairs., Let u be a probability measure on r" 1

which is RR2 iu pairs and let 1 £ k < ntl. Since there is nothing to

prove i{f k = n + 1, we may assume that 1 < k < n. Similary, we may

assume that u(Jl,...,Jn,Jn+1) ¥ 0. It suffices then to prove that

u(Il,...,In,I

n+l
w(J J, oI

) e AURC T IR
<
1,.--' k, k+1’oo.,1n’1n+1) - u(Jl’n.O,Jk’Ik+1'0..,In’Jn+1)

(3.3)

since by the induction hypothesis, we have that

U(Il"..,rn’Jn+1) U(Il’...’Ik’Jk+1’...’Jn’Jn+1)
u(Jl""’Jk’Ik+1""‘In’Jn+1) u(Jl,...,Jn,Jn+1)
But,
(I, eI, T ) w0 T, T T )
< L
u(Il’...’In’Jn‘.'l) - u(Jl,Iz,...,In,Jn+1) -

u(Jl.... NS SRPRTY ,In,In+1)

u(Jl,...,Jk,Ik_'_l,...,In,J )

A

n+l

which is another way of writing (3.3). The jth inequality ahove follows

from the fact that u 1is RR2 in the pair j and (n+l). |

Suppose that (Tl""’Tn) is RR2 in pairs.

Corollary 1. If a, B partition {1,...,n}, then




(3.4) P(TicJ ieawB) P(TieIi,ica\JB)

1'

< P(TicJ tea;T

i cIj,jCB) P(TieIi,iea;T_er,jEB).

3 i

It also holds true if we replace all J's with the K's.

Corollary 2. If a, R, v partition {1,...,n}, then

(3.5) P(TieLi,isa:Tjer,jeBuly) P(TieLi,iea;Tjte,jeB\JY)

< P(T,eL,,iea;T el ,jeB;TkeIk,key) P(T

PR 394 eLi,ieu;Tjte,jeB;TksJk,key)

i

for any intervals Li’ i € a. It also holds true if we replace all J's

with the K's,

If we take Ji = (-m,bil and Ii

Corollary 1, we get (3.5) of Karlin and Rinott (1980). If we take, in

= (-0, o0) for 1€ auB in

Corollary 2, Li = [ai’bi]’ iea, Jj = (—w,bj] and Ij = (—=,®) for

j € Ruy we get (1.7) of Karlin and Rinott (1980).

Also, note that as soon as we have an inequality of the form

(3.6) P(T1 < bpreee,T < bn) < P('r1 <byseea,T f—bk) P(T T

n k

it follows as in the proof of Proposition 3.1 that

n k
3.7 E[ = °1(T1)] <E[n

n
x S MO ELT e @)

whenever ¢, are nonnegative and decreasing. Similarly, if we have

i

T

(3.8) P(T1 > al,...,Tn > an) f__P(T1 > al,...,T > ak) P(T

k

K+l S P10 Ty

K+l > Gke1t 0t

<by)

> a)
n
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‘ then (3.7) holds for ¢i nonnegative and increasing.

In particular, (3.6) holds if F {is RR2 in pairs and (3.8) holds
P
if T is RR, in pairs. 1In fact, if F(or F) is RR, in pairs, then

it is MRR2 in the sense of Karlin and Rinott (1980); i.e.,

1 F(x AY) F(xVY) < F(x) F(y).

4. Closure Results.

¥l
4,} Preservation theorems are useful for identifying negatively dependent
df's or for constructing new negatively dependent df's from known ones.

E. In this section we discuss some preservation results and describe a method

. for the construction of negatively dependent df's.

.

Theorem 4.1, 1If Tyseee»T ~are (*) and if wl,...,wn are strictly
N increasing functions then wl(Tl),...,wn(Tn) are (*) where (*) 1is
‘ one of the following: RR2 in pairs, CDS, NDS, NUOD or NLOD.
]
Theorem 4.2, 1If (Tl""’Tn) and (Sl"“’sn) are independent and are (*)

then (Tl""’Tn’ Sl""‘sn) is (*) where (*) is the same as in Theorem 4.1.

The proofs of these theorems are straightforward and will be omitted.

The following preliminaries are needed for the statement of Theorem 4.3.

A univariate density f 1s said to be a Polya frequency function of

order 2 (PFZ) if f(x-y) 14s TP, on R xR. A probability function f

2

is PF2 if f(x-y) 1is TP2 on N xN where N={,.,,-1,0,1,...}. A

thorough discussion of PF2 densities and many examples can be found in

Karlin (1968). !




P

It will be shown in a later section that many multivariate random
varial les satisfy a certain structural condition. In the next theorem
we will show that this condition implies some of the dependence conditions

that we have introduced.

Theorem 4.3, Let S Sl""’sn be independent rv's and assume that

0’
each has a PF2 density (or probability function). Fix s and let
(Tl""’Tn) have the same joint df as the conditional df of (Sl,...,Sn)
given that S0 + Sl+"'+sn = 5, that is,
(4.1) (T T) % [(s S )|S. + S.#...45_ = 8]
. l,ooo,n 1,--.,n 0 1 se n .

Then (Tl""’Tn) is RR2 in pairs and consequently CDS, NUOD and NLOD.

Proof., Let yu be the probability measure of (Tl""’Tn) on R"™. Then

by assumption u(ll"'°’In) = P(S1 € Il""’sn € In|SO + Sl+...+Sn = 3),

Now the joint density of [(Sl,...,sn)|S0 + Sl+...+sn = g] 1is given by

n
c 121 fi(si)fo(s - sl-...-sn)

where c¢ 1is a normalizing constant. We first show that u is RR2 in

the variables 1 I, when the remaining intervals 13,....1n are held

12 72
fixed. According to the remark (vi) following Definition 2.1, we need

only show that

3(51’52) = c fl(sl) fz(sz) fé(s-slwsz)

is RR2 in $1

and 52‘ where




had

ol ao

TN ¥t T, W

N
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R0 = Joof (s eeaf () £ (rosymuiims ) dm(s)) .. odm(s )

I3 In

and m is either the Lebesgue measure or the counting measure. However,

the above 1is nothing but the convolution of the PF2 functions

f3 xI seeeosf X and fO' where X is the indicator function of the

3 n In A
set A, and so f6 is PF2. It easily follows then that g 1is RR2.
The proof that u 1is RR2 in the variables Ii’ Ij for all 1 <1< j<n

is similar. ||

Remark. Actually, it is not difficult to show that under the assumptions
of Theorem 4.3 the df of the random vector (Tl""’Tn) satisfies the
stronger condition of Karlin and Rinott (1980). The consequences of this

obrervation are discussed below.

It is well known (see Section 5) that the multinomial, the multivariate
hypergeometric, the Dirichlet and the Dirichlet compound multinomial random
vectors as well as some multivariate normal random vectors with nonpositive
correlations, can be represented as in (4.1). Thus, all the respective df's
are RR2 in pairs. Karlin and Rinott (1980) have shown that these df's
actually satisfy thelr stronger condition; however, their proofs are quite

involved and differ from one case to another. By the Remark after Theorem 4.3

these results of Karlin and Rinott (1980) follow at once.

The following theorem will be found useful in the next section.

Theorem 4.4, Assume that (Tl,...,Tn) and (Sl....,Sn) are independent

and NDS, 1If all the univariate marginal densities (with respect to Lebesgue

measure) or probability functions in the discrete case of S and T are

Y




Proof. Let 2z; < z

PF2’ then (T1 + Sl,...,Tn + Sn) is NDS.

Remark. Karlin and Rinott (1980) have proven a similar result. They

assumed that S and T satisfy their RR

have PF, marginals, and they showed that then § + T satisfy some

2
inequalities that are essentially variants of the NUOD and the NLOD

inequalities.

For the proof of Theorem 4.4 we need the following lemmas.

Lemma 4.1, Let X and Y be independent rv's and assume that Y

a PF2 density (probability function). Then

[X|X + Y = z] 2.

This lemma is actually Example 12 of Lehmann (1966).

Lemma 4.2. Let X and Y be independent and assume that X and

have PF2 densities (probability functions). Then

(4.2) (X)X + Y = z] 5F 2.

2
First it will be shown that for every (x,y)

(4.3) P{(X,Y) ¢ u(x'y)

Let A1 = {((s,t): 8+t = 2, X <8<z - v},

B1 = {(s,t): s+t = z,

2 condition and that they

|x + Y=z} < P{IX,Y) ¢ U(x’y)lx +Y=2z)).

has

Denote by U the upper set {(s,t): s > x, t > y}.
(x,y)

» 822, - vy}, C, = {(s,t): s+t = 2., 8 < x},




i "WV*_,“\‘ i‘.’.‘ o
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i =1,2 (see Figure 1), From Lemma 4.1 [XIX +Y = z] 5t z; hence

P{(X,Y) € cllx +Y

n
N
——

[}

P(X < x|X + Y = 2}

}

2PX < x[X+Y =z} = P{(X,Y) € C,|X + Y= z,)).

Similarly

P{(X,Y) ¢ Blkx +Y =2z}

|V

1} 2R e BZ\X +Y =z},

Thus
P(X,Y) € A)|X + Y = z;} 2 PUX,Y) € AX + Y = z))

which is (4.3).

Figure 1.
" |
Now consider upper sets of the form U = U v )? called funda-
i=] (xi IYi H

mental upper domains in Block and Savits (1979). Without loss of generality




22

assume that Xp Xy Lo Sx and Yy 2V, 2 eee 2y Define

i) = min {i: X vy, < zz}

: j, = :

A iy min {1 > 11 x, + vy > zz}

]

i

K and, by induction

g

rr .

w = :

E (4.4) i 41 = min i>3,0x +y, <z}
a4

t (4.5) Jygp =min (4> 4 Lex, +y, > 2.}
{ ! k =1,2,...,n where n < =» 1isg the largest k such that the set on the

right hand side (RHS) of (4.4) or (4.5) 1s not empty. If there are n 1i's

T le T

‘ but only n-1 3's define jy=m+ 1 (see Figure 2 in which m = 12,

=
L}

(oS

-
L]

=8, 3, =11, 1, =12, j, = 13).

1= hre 3
~ n
! Let U=\ U + In the following the first inequality follows
{ k’l (xik.yjk 1)

from UC U and the second one from (4.3):

P{(X,Y) € U[X + Y = 2,} < P{(X,Y) ¢ U|X +Y= z,}

n
= ) P{(X,Y) ¢U )lx +Y =2z

- (x; »y, _
k=1 1,073,711
* (4.6)
) | )
< P{(X,Y) € U X+Y=2z2
-z ’ (x Y L 2
k=1 1.73,-1
|
. = P((X,Y) e U[X + Y = 2,} = P{X,Y) e U[X + Y = 2,}.

AL S, v

..‘ A , . _ , v . e — .“‘



%

—

(xi

i

Y.
J3

-1

11

13

_Figure 2.

Duban

e 2
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Since open upper sets can be approximated by fundamental upper domains (RBlock

and Savits (1979)) it follows from (4.6) that for every open upper set U
POX,Y) e UIX + Y = 2z} < PI(X,Y) e UIX + Y = 2,)

and the proof of the lemma is complete by (1.1). I

lLemma 4.3, Let X = (Xl,...,Xm) and Y = (Yl,...,Ym) be independent

and assume

(4.7) [RyaeeenX _PDIX = x ] % X

and

st
(4.8) [(Yl,...,Ym_l)lYm =yl vy,

Furthermore, assume that Xm and Ym have PF densities (probability

2

functions). Then

(X +Y¥y,ee X 0+ Y )X+ Y =z 1% z.

m-1
Proof. Clearly, for any increasing function g,

- ) e = = F +Y =

L[n(Y] F Y X 4 Ym_l)lxm + Y zm] F[¢(xm,vm)|xm n zm]

where @(xm,ym) = R[g(xl + Yl""’xm-l + Ym—l)lxm =X, Ym - ym]. However,
@(xm,ym) decreases in X and in Y because of (4.7), (4.8) and in-

dependence. Thus, by Lemma 4.2, E[¢(Xm,Ym)|Xm Y - zm] decreases in

2+l

m

Proof of Theorem 4.4, Let 1 ¢ {1l,...,n-1}. Substitute m= 41 + 1 in

st Macieanindhinduttiinis i
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flemma 4.3 to obtain
LCr) + Sy, + 8T+ 8 St

iw1 Y S T Fa! Y oz

that is, T+ S is NDS. ||

5. FExamples.

5.1, The multinomial df.

lLet (Tl""’Tn) have the joint prohability function with parameters

(N’Pl‘- .. -Pn) i

P(T, = T ) N n ot
S AR L § (111p1 )
toio. bt T(N= ) )
1 n {=1 i
n
; )N—izlti 7
x (1- ) p ,» t, >0, ) t, <N,

=1 1 f=1 1

n
where p. > 0 (4 = 1,...,n) and 0 < 2p1 <1,
1=1

The multinomial df 1s the conditional df of independent Poisson

rv's piven their sum. Thus, by Theorem 4.3 the multinomial df is RR2

in pairs and hence it 1s also CDS, NUOD and NLOD. By Remark (ii1) the

joint probability function of (TI""’Tn) is RR2 in pairs. Ry the

discussion after Theorem 4.3 the multinomial df satisfies the RR2

condition of Karlin and Rinott (1980).

To show that (Tl"'°’Tn) is NDS it is enough to show that for

C e e et e s ——— .
i Mdein e b A A s ams
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lwcause then, by symmetry one has (2.4'). The left hand side (LHS) of
(5.1.1) has an (n-1)-dimensional multinomial df with parameters
(N—tn.ql....,qn_]) and the right hand side (RHS) of (5.1.1) has the

same df with parameters (N—tn-l, ql""’qn—l) where q = pi/(l—p“).

Thus,
(5.1.2) LHS (5.1.1) 5% RHS (5.1.1) + (S)eeesS,_p)
where (S]""’Sn—l) has a multinomial df with parameters (l,ql,...qn_l)

and the sum on the RHS of (5.1.2) 18 of independent random vectors.
Inequality (5.1.1) follows now from (5.1.2) and (1.3).

lLet (Xl,...,Xn) he th2 sum of independent n-dimensional, not
necessarily identically distributed, multinomial random vectors, that is,

let (X

1,...,Xn) have the probability generating function
" o et u)
n Py Ut tp L u
2=1 1271 nf n
n
where p., >0, (1=1,...,n), 0c< y Pig <l and Ny >1 (2=1,2,...,m).

i=1
The univariate marginal df's of a multinomial df {1s a binomial df.

Since the binomial df has a PF2 probability function it follows from

Theorem 4.4 that (Xl,...,Xn) is NDS. Hence (X ,...,Xn) is also NUOD

1

and NLOD, that is,

LX > x ) <

P(X1 > Xpseo n n 40

and

PX) € XpyeeenX

These inequalities are stated unproven in Mallows (1968)., Compare also

Lehmann (1966), pp. 1143, 1144 and 1151.

N n——




T——

.20 Maltivariate normal.,

let T = (T],...,Tn) he & multivariate svometrric normal random
}
i) =p <0, .

We will show that T 1is RR2 in pairs.

veetor with Cnrr(Ti,T 1 <y <7 <n., Then op > - (n-1)"

Using Theorem 4.1 assume, without loss of generality, that ETi = 0

and Vnr(Ti) =1, 1=1,...,n., lLet Y],...,Y“ he independent identically

distributed normal rv's such that EYi = (0 and Var(Yi) =1-p (1 =1,,..,n)

and let YO be an independent normal rv with EYO = 0 and

Var(Y)) = (=) '(1-p) (1+(-1)p). Then

. st _
(T)heeahT) " [(Yl,...,yn)lv0+v+...+vn- 0).

1 1

Since any normal density is PF2 it follows, from Theorem 4.3, that T

is KRR, 1in pairs,.

In fact we can ohtain a stronger result, If the correlation matrix

of T is of the form

1/2 1/2 1/2
T, 0 (r1 1) ((r] 1) ,...,(rn 1) )
(5.2.1) - . )
1/2
0 r (rn 1)
S
vhere roo> 1, &= 1,...,n and z r > n-1 then T 1{1s RR in
{ - i - - 2
i=1
pairs,

To show it note that every matrix of the form (5.,2.1) can bhe the

correlation matrix of a multinomial random vector, X = (XI""’Xn)’ sav.

Let i(ﬂ), ¢t =1,2,..., be a sequence of independent random vectors
m
2
distributed as X. Clearly X‘m) = l( ) is a multinomial random
- =1

(m)

vector with correlation matrix (5.2.1). Normalizing Y such that it
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has zero means and unit variances, it converges in distribution, bv the
wltivariate central limit theorem, to a multivariate normal random
vector with correlation matrix (5.2.1). By Remark (vii) the limit in
distribution of RR2 in pairs random vectors is RR2 in pairs. The
assertion in the preceeding paragraph now follows. The previous result
that deals with the symmetric multivariate normal §f with negative
correlations o 1is obtained by taking r =1 - p 1in (5.2.1).

Every multivariate normal random vector T with nonpositive

correlations is NDS. It is easy to verify (2.4') directly using (1,2).

Thus T satisfies (2.3) and (2.3').

5.3. Multivariate hypergeometric.

lLet (Tl,...,Tn) have the probability function

n
M- ] M
- 1 n
m 1|, M i=1
])(T = tl’..."l‘n = tn) = (N) " (ti‘ n ’ ti _>_ O. iZ] tl i N'

i=1

with positive inteper-valued parameter vector (N, Ml""'Mn’ M) [see
Johnson and Kotz (1969].

The multivariate hypergaometric df 1is the conditional df of
independent binomial rv's given their sum. Thus, by Theorem 4.3 the
hypergeometric df is RR2 in pairs and hence it is also CDS, NUOD
and NLOD. By Remark (i1i) the joint probability function of (Tl,...,Tn)
is RR2 in pairs. A special case of this fact was ohserved by Lehmann
(1966), p. 1144, See also Ebrahimi and Ghosh (1980). Ry the discussion

after Theorem 4,3 it follows that this df satisfies the RR2 condition

of Karlin and Rinott (1980).
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We will show now that T is NDS by provinpg that, for 0 < tn < N-1,

P o T = 1 =
(5.3.1) [Ty seeaa T T = 3> (T e, T DT = e+ 1]

Then, by symmetry, (2.4') follows. Since the random vectors on each side

of (5.3.1) have multivariate hypergeometric df we actually have to show

that

(5.3.2) u¥y

where |l = (Ul,...,Un_l) has hypergeometric df with parameters

(& + 1, Nl""'Mn—l’ M+ 1) and V= (Vl""’vn-l) has the same df with
parameters (ﬁ, Ml""’Mn—l’ M) where N = N - L, - 1 and M =M - tn - 1.

Denote m=n - 1.

Thinking about U1 as the number of individuals in the sample in

Category 1 (4 = 1,...,m) 1t is easy to see, by conditioning on the category

of the first individual chosen, that

st . (L) ) )
el F o T vy

(2)

(u g1

+1, W w;')) if the first

) S't v

individual i{s in category 2, £ = 1,2,...,m, and that (U]""‘Um 1

..,Vm)
if the first individual 1s in neither of categories 1,2,...,m, where
(wfl),...,w;[)) has a multivariate hypergeometric df with parameters

(N, Ml""’Ml—l’ Mil’ Ml+l""'Mm’ M). Thus for proving (5.3.2) it

suffices to show that

G e e Y S w1,

We will prove (5.3.3) when 2 = 1; the proof for the other t's s

(1) w(1)

1 eereo¥y D)

similar. Omit the superscript 1 and consider (wl,...,wm) - (W




vhich has o hyperpeometric distribution with parameters

. 3 - . . 4 \.
(-'\ ll lv '1)!'-';‘"“1‘ 1 ’ ‘l)'

m
Write
/ # -1
PV, = “ee = =
(V) = vpaeenaV = v)) om
M,ooo,M , M- ] M
’ » ’
! m =1 1
N \ 7 M -N
X
- ] e D ]
VAR aV,N- v M-V,...,M -V,M"N- M, + V.
1 m i=1 i 1 1 m m o1 i o 1/
\ \

Then, it s easily seen, that the rv'’s V.,...,V can have the following
1 m
interpretation: First divide a population of size M 1into a group of size

N and another group of size M - N. Next, choose at random M, individuals

and let V1 be the number of them in the first group (of size N), then

choose at random M2 individuals of the remaining M- Ml individuals and

let V2 be the number of them in the first group. Continuing this way,
finally choose Mm individuals of the remaining M - M1 - eee -~ Mm-l

individuals and let Vm be the number of them in the first group.

The rv's WiseoonW — may have a similar interpretation.

With these interpretations it is easily seen that if the first

individual chosen in the 'V experiment' is not in the first group then

st st
VoS Wy 2

ntherwise (vl....,vm) 5 (wl +1, wz,...,wm). Thus, unconditionally

+1, W ,...,wm), where the 1nequality follows from (1.2).

v ?‘ (w] + 1,....wm), which proves (4.3.3) when # =1,

e 11 At e e P RPN 7




4 % 4. The Dirichlet distribution.
|
Let T = (Tl""’Tn) have the density
, n
- r(.zoej) n o 685-ln  0,-1 n
f(ty,een,t ) = —1—— - Jt) mot st >0, Yt <1,
1 n n j-l ] j=1 b j - §=1 1 -
m T(0,) .
=0 4

where the parameter vector (00,01,...,6n) satisfies 6, > 1, § = 0,1,...,n.

3

The Dirichlet df 1is the conditional df of independent gamma rv's

piven their sum. Thus, by Theorem 4.3 the Dirichlet df is RR2 in pairs

and hence it is also CDS, NUOD and NLOD. By Remark (iii) f {is RR2 in
pairs. Special case of this fact is Example 10 (iii) of Lehmann (1966). See
also Ebrahimi and Ghosh (1980). By the discussion after Theorem 4.3 it

follows that this df satisfies the RR condition of Karlin and Rinott

2
(1980).
To prove that T 1is NDS it is enough to show that for t g_t;
= %t ) = L
(5.4.1) (CTyaenaa T PIT = e 13 (T, DT =l

then (2.4') follows.

It is easily seen that

-1 o st ' -1 - []
(1-t ) [(Tl,....Tn_l)l'ln =t ] = (-t) [(Tl,...,Tn_l)lTn =t

Since 1 - tn > 1 - t; (5.4.1) follows from (1.4).

5.5. Dirichlet compound multinomial df.

let T = (Tl"'°’Tn) have the probability function




n
N! T( [Oej) CT(e46)
. —J4=0 -
tl’l) n 1:1 t !T‘(O )
Fr(N+ ) 0) ! !
j=o0

n
r(N- Tt

R j + 60)

x

n
(N - ] e)lire))
gm0

where N 1is a positive integer and 6, > 1, § = 0,1,...,n {see Johnson

]
and Kotz (1969)].

The Dirichlet compound multinomial df 1is the conditional df of

independent Pascal (negative binomial) rv's given their sum. Thus, by

Theorem 4.3 this df 1s RR2 in pairs and hence it is also CDS, NUOD

and NLOD, and by the remark after Theorem 4,3 it satisfies the RR2

condition of Karlin and Rinott (1980).

To show that T 1s NDS it suffices to prove that

st
(5.5.1) [(Tl""’Tn-l)ITn el Ve,

then (2.4') follows by symmetry. But the random vector in (5.5.1) has
the Dirichlet compound multinomial df with parameters N - tn’

00""'0n—1' Using this fact it is easy to verify (5.5.1).

Df's supported by negatively tilted surfaces.

In this subsection we illustrate two simple examples of such df's in
The general idea then should be clear and will not bhe detailed here.
lLet (TI'TZ‘Tj) have the uniform df on the surface

((t),ty,t5) 2 (0,0,0): t) + £, + £y = 1}. Then [(T],T2)|T3 = t,] has




a uniform df on thg sepment {(tl,tz) > (0,0): t1 + t2 =1 - t3}

which is clearly stochastically decreasing in ¢t By symmetry (2.4')

3°

holds, hence (Tl’T2’T3) is NDS. Clearly (TI’TZ’T3) is also CDS.
Similarly, if (TI’TZ’T3) have the uniform df on the surface of

the unit sphere intersected with the positive (or the negative) orthant

then (T T3) is NDS and CDS.

1T

5.7. NUOD df's in reliability theory.

Buchanan and Singpurwalla (1977) considered the class of nonnegative
multivariate new better than used (NBU) df's that satisfy, for all
>0, t>0,

(5.7.1) P{T] > s, + t

1 1....,Tn > s + tn} < P(T1 > 5

1,...,Tn > sn)

X P(Tl RS EERERL
It is well known that, when n = 2, (5.7.1) implies that (Tl’TZ) are

nepatively quadrant dependent, that is

(5.7.2) P(T, > t;, T, > t,) < P(Ty > t,) P(T, > t,).

1 "2

We will show, by induction, that in general (5.7.1) implies that

(T',...,Tn) is NUOD., From (5.7.2) we know it is true when n = 2, Assume
that

n-1
(.7.3) PAT, > taeeanT oy > £ ) < 1:1 P(T, > t)).




D - S e
- a .

Substitute

to obtain

P(T1

that is,

s, = 8§, = = g =t = 0 in (5.7.1) and use (5.7.3)

> tlyoo-ng_l > tn__l) Tn > sn) S_P(Tn > sn) P(Tl > tl""!Tn_l > tn~]
n-1

<im P('l‘i > ti)] P(Tn > Sn)’
1=1

T 4s NUOD.
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